Date: 2024/10/15 Page 1 of 44

The following sample(s) was/were submitted and identified by the client as:

Applicant		HANGZHOU KinCony ELECTRONICS CO.,LTD	
Adress		Room 321, Building 6, Xixi Century Center, Xihu District, Hangzho City, Zhejiang Province, China	
Sample Description	A.	Smart Energy Meter	
Style/Item No.	0.0	N90,N60,N30,N20,N10,M16v2,M1,MB	
Sample Receiving Date	Op.	October 15, 2024	
Testing Period	9	October 15, 2024 to November 15, 2024	
Testing Performed	000	SELECTED TEST(S) AS REQUESTED BY APPLICANT	
Test Requested	0	ETSI EN 301 489-1 V2.2.1(2019-03) ETSI EN 301 489-17 V3.2.0 (2017-03)	
Test Result(s)	60	FOR FUTHER DETAILS, PLEASE REFER TO THE FOLLOWING PAGE(S)	
Conclusion	00	THE SUBMITTED SAMPLE MET THE TEST REQUIREMENT	

For and on behavior Shenzheng Hongtong Testing Technology Co., Ltd

Authorized Signature

General Wanager -HTS/SHO

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 2 of 44

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	November 15, 2024	TCJS.24111 63	ALL	Initial Issue

Note: Format version of the report -V01

1. TEST SUMMARY

Test procedures according to the technical standards:

Draft ETSI EN 301 489-17 V3.2.0 (2017-03)

	EMC Emission			
Standard	Test Item	Limit	Judgment	Remark
	Conducted Emission On AC And Telecom Port 150kHz to 30MHz	Class B	N/A	4.4.4.
EN 55032:2015	Radiated Emission 30MHz to 1000MHz	Class B	PASS	To Allenda
	Radiated Emission 1GHz to 6GHz	Class B	PASS	NOTE (1)
	EMC Immunity			
Section	Test Item	Performance Criteria	Judgment	Remark
EN 61000-4-2:2009	Electrostatic Discharge	В	PASS	120 050
EN 61000-4-3:2006+A1: 2008+ A2:2010	RF electromagnetic field	Α	PASS	S. Charles
EN 61000-4-4:2012	Fast transients	В	N/A	1, 30, 40,
EN 61000-4-5:2014+A1:2017	Surges	В	N/A	0, 40, 70
EN 61000-4-6:2014	Injected Current	Α	N/A	1 2 1 6
EN 61000-4-11:2004+A1:2017	Volt. Interruptions Volt. Dips	B/C/C	N/A	NOTE (2)

(1) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz.

If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 Note: MHz the measurement shall only be made up to 2 GHz.

If the highest frequency of the internal sources of the EUT is between 500 MHz and 1GHz, measurement shall only be made up to 5 GHz.

If the highest frequency of the internal sources of the EUT is above 1 GHz, the

Measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.

(2) Voltage dip: 100% reduction – Performance Criteria B Voltage dip: 30% reduction – Performance Criteria C

Voltage Interruption: 100% Interruption – Performance Criteria C

- (3) For client's request and manual description, the test will not be executed.
- (4) " N/A" denotes test is not applicable in this Test Report

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 **Date**: 2024/10/15

Page 3 of 44

1.1 TEST FACTORY

Company Name:	Shenzhen Hongtong Testing Technology Co., Ltd.
Address:	Gangshen Innovation Park, No. 38 Huaning Road, Xinshi Community, Dalang Street, Longhua District, Shenzhen
E-mail:	info@zts-lab.com.cn

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
HTSC01	ANSI	9KHz-150KHz	2.88	
A Paragraphy	On Ser Se	150 KHz ~ 30MHz	2.67	0 1 1 1 0 2 1 2 1 0 1

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
HTSC02	ANSI	30MHz ~ 200MHz	3.73	The Marie Ton Ton
Ton Hon		200MHz ~ 1000MHz	3.92	The state of the state of
4. 4.	10 m	1GHz ~ 6 GHz	3.31	To the to the

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 4 of 44

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	Smart Energy Meter	
Brand Name		
Main Name	KC868-H32B	
Series Model	KC868-H32B, KC868-H16B, KC868-H8B, KC868-H4B, KC868- H2B, KC868-COLB, KC868-COLB-Mini, KC868-A4, KC868- H32BS	
Model Difference		
Product Description	Input Power: DC12V Max.load: 250VAC 10A/gang Wifi standard: 2.4G/b/g/n OR Network:10/100Base-T	
Hardware version number	N/A	
Software version number	N/A	

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT

operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	BT Mode

Final Test Mode	Description	
Mode 1	BT Mode	0. 3. 3

For EMS Test		
Final Test Mode	Description	
Mode 1	BT Mode	

Note: The test modes were carried out for all operation modes(include link and idle). The final test mode of the EUT was the for Mode 1, and its test data was showed.

2.3 DESCRIPTION OF TEST SETUP

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 5 of 44

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the teHTC.

Item	Equipment	Mfr/Brand	Model/Type No.
N/A	N/A	N/A	N/A
To Section			
Section 4		Hone to the Monte of	
70 A 4 40	0 to 10 to 10 to 10 to 10 to	The part of the second	
To a contract of		To a series of the series of t	

Item	Shielded Type	Ferrite Core	Length
N/A	N/A	N/A	N/A
The state of		San	
3 40 m		To see to the self to	4, 2, 20, 10, 20, 20
4 80 6 1	The the transfer of the	10 10 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	The second second second
	The Month of the San	The same of the same of	The to to to the the too

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" means "shielded" "with core"; "NO" means "unshielded" "without core",

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 6 of 44

2.5 MEASUREMENT INSTRUMENTS LIST 2.5.1 RADIATED TEST SITE

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
EMI Test Receiver	R&S	ESCI	102086	2020.10.15	2025.10.14
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.15	2025.10.14
Horn Antenna	SCHWARZBECK	BBHA 9120D	1343	2020.10.15	2025.10.14
Spectrum Analyzer	Agilent	E4407B	MY50140340	2020.10.15	2025.10.14
Pre-mplifier(1G-18G)	Agilent	8449B	60538	2020.10.15	2025.10.14
Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.10.15	2025.10.14
Pre-mplifier(0.1M-3GHz)	EM	EM330	S. 4c. 15	2020.10.15	2025.10.14

2.5.2 ESD

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
ESD TEST GENERATOR	HAEFELY	ONYX 16	173835	2020.10.15	2025.10.14

2.5.3 RS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
RF Relay matrix tsj	TSJ	RFM-S621	04261	2020.10.15	2025.10.14
Power meter	Agilent	E4419B	QB4331226	2020.10.15	2025.10.14
Power Sensor	Agilent	8481A	MY41092622	2020.10.15	2025.10.14
Power Sensor	Agilent	8481A	US37296783	2020.10.15	2025.10.14
Signal Generator	Agilent	N5182A	MY46240556	2020.10.15	2025.10.14
Power Amplifier	МІСОТОР	MPA-80-1000-250	1711489	2020.10.15	2025.10.14
Power Amplifier	МІСОТОР	MPA-1000-3000-75	1711488	2020.10.15	2025.10.14
Power Amplifier	MICOTOP	MPA-3000-6000-50	MPA1706275	2020.10.15	2025.10.14
Logarithmic-periodic Antenna	Schwarzbeck	VULP9118E	820	2020.10.15	2025.10.14
Microwave Horn Antenna	Schwarzbeck	BBHA 9120LF	F01008	2020.10.15	2025.10.14

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 7 of 44

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT 3.1.1 POWER LINE CONDUCTED EMISSION (Frequency Range 150KHz-30MHz)

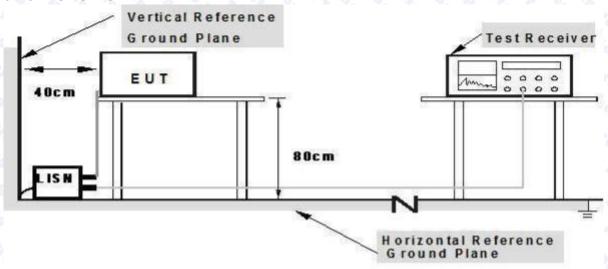
FREQUENCY (MHz)	Class A	(dBuV)	Class B (dBuV)		
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

Note

- (1) The tighter limit applies at the band edges.
- (2) The limit of"*"marked band means the limitation decreases linearly with the logarithmofthe frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

3.1.2 TEST PROCEDURE

Page 8 of 44

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.1.5 TEST RESULTS

Temperature:	26℃	Relative Humidity:	54%
Phase:	L/N	Test Mode:	N/A
Test Voltage:	250VAC	Sept to the Sept to Section	

Note: DC 6V test is not applicable in this test report.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 9 of 44

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT (Below 1000MHz)

	Clas	ss A	Class B		
FREQUENCY (MHz)	At 10m	At 3m	At 10m	At 3m dBuV/m	
	dBuV/m	dBuV/m	dBuV/m		
30 – 230	40	50	30	40	
230 – 1000	47	57	37	47	

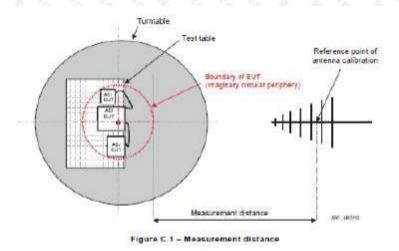
3.2.2 LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class A (at	3m) dBuV/m	Class B (at 3m) dBuV/m		
TREQUEROT (MITZ)	Peak	Avg	Peak	Avg	
1000-3000	76	56	70	50	
3000-6000	80	60	74	54	

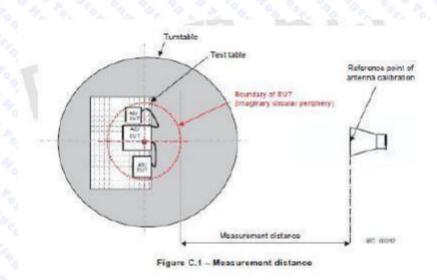
Notes:

- (1) The limit for radiated test was performed according to as following:CISPR 32.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

3.2.3 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured, above 1G Average detector mode willbe instead.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP(AV) Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal


Page 10 of 44

3.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz

(B) Radiated Emission Test Set-Up Frequency Above 1GHz

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 11 of 44

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS(30 - 1000 MHz)

Temperature:	25.7℃	Relative Humidity:	63%
Phase:	Horizontal	Test Mode:	Mode 1
Test Voltage:	250VAC		Hotton Con Charles Har

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	47.3253	37.18	-20.10	17.08	40.00	-22.92	QP
2	68.6310	43.70	-24.14	19.56	40.00	-20.44	QP
3	102.7192	36.65	-18.96	17.69	40.00	-22.31	QP
4	150.0108	35.77	-17.97	17.80	40.00	-22.20	QP
5	316.5890	30.82	-14.28	16.54	47.00	-30.46	QP
6	408.9460	27.41	-11.08	16.33	47.00	-30.67	QP

Remark:

- 1. All readings are Quasi-Peak.
- 2. Margin = Result (Result = Reading + Factor)-Limit.
- 3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

Temperature:	25.7℃	Relative Humidity:	63%
Phase:	Vertical	Test Mode:	Mode 1
Test Voltage:	250VAC	The Control of the Co	

No.	Frequency (MHz)	Reading (dBuV)	Correct Factor (dB)	Results (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	47.9940	35.92	-20.45	15.47	40.00	-24.53	QP
2	66.9670	43.76	-24.17	19.59	40.00	-20.41	QP
3	105.2718	35.57	-18.74	16.83	40.00	-23.17	QP
4	175.0367	35.72	-19.38	16.34	40.00	-23.66	QP
5	501.1790	32.50	-8.90	23.60	47.00	-23.40	QP
6	896.9965	28.36	-2.30	26.06	47.00	-20.94	QP

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 12 of 44

Remark:

- 1. All readings are Quasi-Peak.
- 2. Margin = Result (Result = Reading + Factor)-Limit.
- 3. Factor= Cable Loss +Antenna Factor-Amplifier Gain

3.2.7 TEST RESULT (1000 - 6000 MHz)

Temperature:	24 °C	Relative Humidity:	54 %
Test Mode:	Mode 1	Test Power:	250VAC

Freq. (MHz)	Reading (dBuV)	Corr.Factor (dB)	Measured (dBuV/m)	Limits (dBuV/m)	Margins (dBuV/m)	Ant. H/V	Mark
2765.05	67.92	-11.02	56.90	70.00	-13.10	V	PK
2765.05	49.00	-11.02	37.97	50.00	-12.03	V	AVG
3702.46	74.57	-15.36	59.22	74.00	-14.78	V	PK
3702.46	53.33	-15.36	37.97	54.00	-16.03	V	AVG
2765.05	65.34	-11.02	54.31	70.00	-15.69	Н	PK
2765.05	49.62	-11.02	38.59	50.00	-11.41	Н	AVG
3702.46	74.69	-15.36	59.34	74.00	-14.66	Н	PK
3702.46	53.44	-15.36	38.09	54.00	-15.91	Н	AVG

Remark:

Absolute Level= Reading Level+ Factor, Margin= Absolute Level - Limit

4. EMC IMMUNITY TEST

4.1 GENERAL PERFORMANCE CRITERIA

4.1.1 PERFORMANCE CRITERIA (Bluetooth)

According to Draft ETSI EN 301 489-17 standard, the eneral erformance criteria as following

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 13 of 44

Criteria	During the test	After the test		
A	Shall operate as intended May show degradation of performance (see note 1) Shall be no loss of function Shall be no unintentional transmissions	Shall operate as intended Shall be no degradation of performance (see note 2) Shall be no loss of function Shall be no loss of stored data or user programmable functions		
В	May show loss of function (one or more) May show degradation of performance (see note 1) No unintentional transmissions	Functions shall be self-recoverable Shall operate as intended after recovering Shall be no degradation of performance (see note 2) Shall be no loss of stored data or user programmable functions		
С	May be loss of function (one or more)	Functions shall be recoverable by the operator Shall operate as intended after recovering Shall be no degradation of performance (see note 2)		

NOTE 1: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: no degradation of performance after the test is understood as any degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not

specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 **Date**: 2024/10/15

Page 14 of 44

PERFORMANCE FOR TT

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5 000 ms duration, for which performance criteria C shall apply. TeHTC shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR TR

The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5

000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under

circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CT

The performance criteria A shall apply. TeHTC shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an Acknowledgement (ACK) or Not Acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

PERFORMANCE FOR CR

The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall

the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

4.1.2 GENERAL PERFORMANCE CRITERIA TEST SETUP

The EUT tested system was configured as the statements of 2.2 Unless otherwise a special operating condition is specified in the follows during the testing.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 15 of 44

4.2 ESD TESTING

4.2.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-2			
Discharge Impedance:	330 ohm / 150 pF			
Required Performance	В			
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV (Direct) Contact Discharge: 2kV/4kV (Direct/Indirect)			
Polarity:	Positive & Negative			
Number of Discharge:	Air Discharge: min. 20 times at each test point Contact Discharge: min. 200 times in total			
Discharge Mode: Single Discharge				
Discharge Period:	1 second minimum			

4.2.2 TEST PROCEDURE

The test generator necessary to perform direct and indirect application of discharges to the EUT in the following manner:

a. Contact discharge was applied to conductive surfaces and coupling planes of the EUT. During the test, it was performed with single discharges. For the single discharge time between successive single discharges was at least 1 second. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the horizontal coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges.

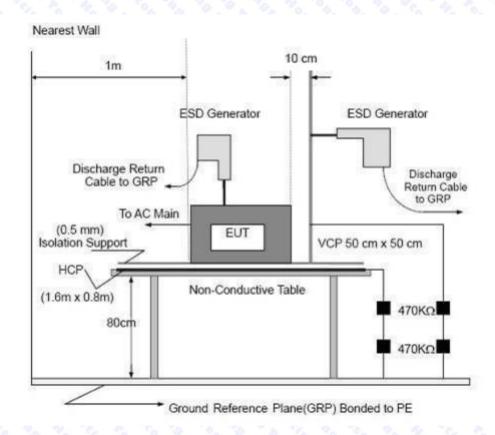
If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

Vertical Coupling Plane (VCP):

The coupling plane, of dimensions 0.5m x 0.5m, is placed parallel to, and positioned at a distance 0.1m from, the EUT, with the Discharge Electrode touching the coupling plane.

The four faces of the EUT will be performed with electrostatic discharge. Horizontal Coupling Plane (HCP):

The coupling plane is placed under to the EUT. The generator shall be positioned vertically at a distance of 0.1m from the EUT, with the Discharge Electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.


b. Air discharges at insulation surfaces of the EUT.

It was at least ten single discharges with positive and negative at the same selected point.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 16 of 44

4.2.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940k total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC /EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC/EN 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 **Date**: 2024/10/15

Page 17 of 44

4.2.4 TEST RESULT

Temperature:	23.9℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Voltage:	250VAC
Test Mode:	Mode 1		

BT TEST RESULT

Discharg e Level	Polarity	Test Points	Contact Discharge	Air Discharge	Criterion	Test Result
4	+/-	VCP/HCP	NOTE	N/A	Α	PASS
2,4,8	+/-	1-5	N/A	NOTE	Α	PASS

Note: The EUT function was correct during the test. Red Dot —Air Discharged Blue Dot —Contact Discharged

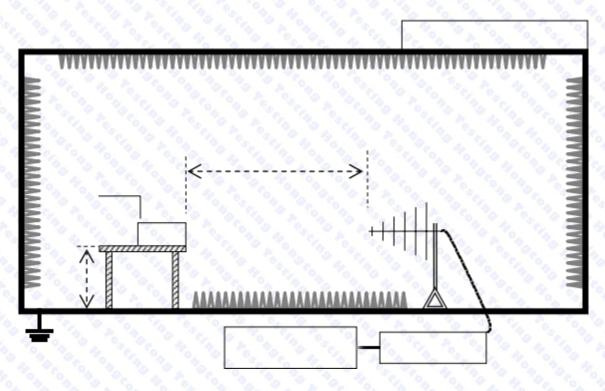
4.3 RS TESTING

4.3.1 TEST SPECIFICATION

Basic Standard:	IEC/EN 61000-4-3	
Required Performance	A	
Frequency Range:	80 MHz - 6000 MHz	
Field Strength:	3 V/m	
Modulation:	1kHz Sine Wave, 80%, AM Modulation	
Frequency Step:	1 % of fundamental	
Polarity of Antenna:	Horizontal and Vertical	
Test Distance:	3 m	
Antenna Height:	1.5 m	
Dwell Time:	at least 3 seconds	

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 18 of 44


4.3.2 TEST PROCEDURE

The EUT and support equipment, which are placed on a table that is 0.8 meter above ground and the testing was performed in a fully-anechoic chamber.

The testing distance from antenna to the EUT was 3 meters. The other condition as following manner:

- a. The frequency range is swept from 80 MHz to 6000 MHz with the signal 80%amplitude modulated with a 1kHz sine wave. The rate of sweep did not exceed 1.5x 10 -3 decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- b. The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- c. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

4.3.3 TEST SETUP

Note:

TABLE-TOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC/EN 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 **Date**: 2024/10/15

Page 19 of 44

4.3.4 TEST RESULTS

Temperature:	24.9℃	Relative Humidity:	50%
Test Voltage:	250VAC	Test Mode:	Mode 1

BT TEST RESULTS

Frequency Range (MHz)	RF Field Position	R.F. Field Strength	Azimuth	Observation	Perform. Criteria	Results	Judgment		
To to Honor	Op. To A	3 V/m (rms)	Front	1 4 54	O NOOD S		4 40		
80~6000	H/V	AM Modulated	AM Modulated		Rear	CT,CR	to Style	200	PASS
80~0000	1 1 V			Left	CI,CK	Α	A	PASS	
to the total	a charles		Right	The Standard	10, 20,	To Sta	To poor		

Note: "A" stand for, during test, operate as intended no loss of function, no degradation of performance, no unintentional transmissions and after test, no degradation of performance, no loss of function, no loss of stored data or user programmable functions.

Note:

- 1) N/A denotes test is not applicable in this test report.
- 2) Criteria A: There was no change operated with initial operating during the test.
- 3) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 4) Criteria C: The system shutdown during the test.

*****END OF THE REPORT***

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 20 of 44

1. Test Summary

Standard Clause	Description of test	Test Applicability	Result
4000	RF Output power(Conducted)	Applicable	Pass
4.3.2.2	RF Output power(Radiated) ¹	Not Applicable	N/A
	Power Spectral Density(Conducted)	Applicable	Pass
4.3.2.3	Power Spectral Density(Radiated) ¹	Not Applicable	N/A
	Duty Cycle,Tx-sequence,Tx-gap(Conducted)	Applicable	Pass
4.3.2.4	Duty Cycle,Tx-sequence,Tx-gap(Radiated) 1	Not Applicable	N/A
	Medium Utilization factor(Conducted)	Applicable	Pass
4.3.2.5	Medium Utilization factor(Radiated) ¹	Not Applicable	N/A
4.3.2.6	Adaptivity ²	Not Applicable	N/A
6 3	Occupied Channel Bandwidth(Conducted)	Applicable	Pass
4.3.2.7	Occupied Channel Bandwidth(Radiated) ¹	Not Applicable	N/A
A CAN CAN	Transmitter unwanted emissions in the out-of-band domain (Conducted)	Applicable	Pass
4.3.2.8	Transmitter unwanted emissions in the out-of-band domain (Radiated) ¹	Not Applicable	N/A
10000	Transmitter unwanted emissions in the spurious domain (Conducted)	Applicable	Pass
4.3.2.9	Transmitter unwanted emissions in the spurious domain (Radiated)	Applicable	Pass
4.0.0.40	Receiver Spurious Emissions(Conducted)	Applicable	Pass
4.3.2.10	Receiver Spurious Emissions(Radiated)	Applicable	Pass
4.3.2.11	Receiver Blocking ²	Not Applicable	N/A
4.3.2.12	Geo-location capability ³	Not Applicable	N/A

Note 1: The item shall only be used for integral antenna equipment that does not have a temporary antenna connector provided. But EUT has a temporary antenna connector, these standard clauses don't apply to the EUT.(N/A)

Note 2: The item does not apply to non-adaptive equipment. And EUT is the non-adaptive equipment. So these standard clauses don't apply to the EUT. (N/A)

Note 4: The item only applies to equipment with geo-location capability. EUT is not with geo-location capability. So this standard clause doesn't apply to EUT. (N/A)

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 21 of 44

2. General Information

2.1. EUT Description

Product Name : Smart Energy Meter

Trade Name : /

Model No. : N90,N60,N30,N20,N10,M16v2,M1,MB

Type of Modulation : Modbus

Antenna Type : ***

oldered on PCB

Frequency Range : 2.4G
Channel Separation : 1MHz
Channel Number : 1
Antenna Gain : -5 dBi

2.2. Operational Description

The information contained within this report is intended to show verification of compliance of the EUT to the requirements of ETSI EN 300328 Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,1 GHz ISM band and using wide band modulation techniques; Harmonized EN covering the essential requirements of article 3.2 of the RED Directive.

2.3. Test System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model	Serial No.	Due Date
_1	PXA Signal Analyzer	Aglient	N9030A	MY54170284	2025.09.23
2	Shielding Room	ChengYu	5×4×3(m)	CR	2025.09.23
3	Spectrum Analyzer	R&S	FSU26	200880	2025.09.23
4	3m Semi-anechoic Chamber	ChengYu	9.2×6.25×6.1 5(m)	SAR	2025.09.23
5	BroadBand Log Antenna	Schwarzbeck	VULB 9163	9163-561	2025.09.23
6	Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1033	2025.09.23

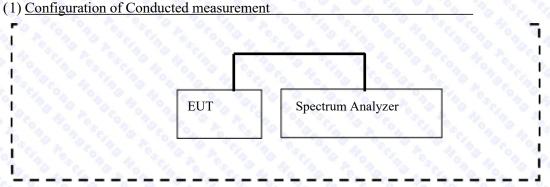
2.4. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been calculated in accordance with TR 100 028-1.

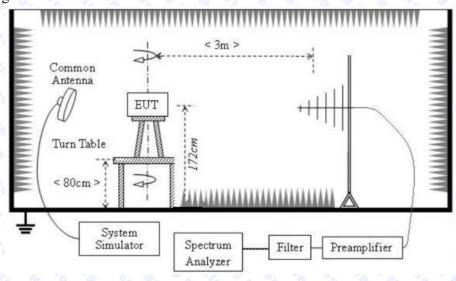
This uncertainty represents an expanded uncertainty expressed at approximately the 95%

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301


confidence level using a coverage factor of k=2.

Date: 2024/10/15


Page 22 of 44 This lab's measurement uncertainty ULab, is low than Table 7: Maximum measurement uncertainty of ETSI EN 300 328, therefore compliance is deemed to occur if no measured disturbance exceeds the disturbance limit.

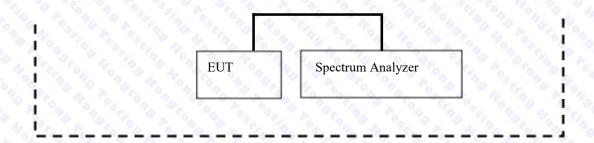
Radio frequency	±1.0x10 ⁻⁷
Total RF power, conducted	±0.48dB
RF power density, conducted	±0.48dB
Humidity	±3%
Temperature	±2.0°C
DC and low frequency voltages	±0.04%

2.5. Configuration of tested System

(2) Configuration of Radiated measurement

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal

Page 23 of 44


3. RF Output Power(Conducted)

3.1. Test Equipment List

The following test equipment are used during testing the RF Output Power:

Item	Instrument	Manufacturer	Model/Serial No.	Due Date
1 %	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

3.2. Test Setup

3.3. Limits

The maximum RF output power for non-adaptive Frequency Hopping equipment shall be declared by the supplier. The supplier declared that the maximum RF output power was 0 dBm.

3.4. Test Procedure

Use the following spectrum analyzer setting:

CH1: Center Frequency 2401MHz Span: 1.5 MHz Resolution Bandwidth (RBW)

: Auto Video Bandwidth

(VBW) :≥RBW Sweep : Auto Trace : Max Hold

Waiting for the trace stabilizing and save the result image.

3.5. EUT Operation

See chapter 2.2 of this test report.

3.6. Test Specification

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

According to ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.2 RF output power.

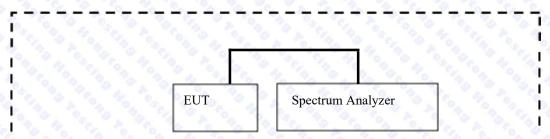
Page 24 of 44

3.7. Test Result

$$p = A + G + Y + c$$

P is the RF output Power; A is the measured power got from the PXA; G is the appliable antenna assemble gain in dBi; Y is the additional beamforming gain; C is the cable loss in dB.

Frequency Point(MHz)	A(dBm)	G(dBi)	Y(dBm)	C(dB)	P(dBm)	Test Result
2401(CH1)	-10.02	-5	0	0.69	-14.33	Pass


4. Power Spectral Density(Conducted)

4.1. Test Equipment List

The following test equipment are used during testing the Power Spectral Density:

Item	Instrument	Manufacturer	Model/Serial No.	Due Date
1	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

4.2. Test Setup

4.3. Limits

For equipment using wide band modulations other than FHSS, the maximum Power Spectral Density is limited to 10 dBm/MHz.

4.4. Test Procedure

The EUT is in TX mode.Connect the EUT to PXAand test the mouse of CH1.Use the following spectrum analyzer

setting: CH1: Center Frequency

2401MHz

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 Date: 2024/10/15

Span: 1.5 MHz
Page 25 of 44

Resolution Bandwidth (RBW): Auto Video Bandwidth

(VBW) :≥RBW Sweep : Auto

Trace: Max Hold

Waiting for the trace stabilizing and save the result image.

4.5. EUT Operation

See chapter 2.2 of this test report.

4.6. Test Specification

According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.3 Power Spectral Density.

4.7. Test Result

$$psd = A + c$$

PSD is the Power Spectral Density; A is the measured power spectral density in dBm; C is the cable loss in dB.

Frequency Point(MHz)	A(dBm)	C(dB)	PSD(dBm)	Test Result
2401(CH1)	-8.727	0.69	-8.037	Pass

5. Duty Cycle, Tx-sequence, Tx-gap (Conducted)

5.1. Test Equipment List

The following test equipment are used during testing the Duty Cycle, Tx-sequence and Tx-gap:

Item	Instrument	Manufacturer	Model/Serial No.	Due Date
1	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

5.2. Test Setup

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 Date: 2024/10/15
5.3. Limits Page 26 of 44

The Duty Cycle shall be equal to or less than the maximum value declared by the supplier. The supplier declared that the maximum value of Duty Cycle is 10%. The Tx-sequence time shall be equal to or less than 10 ms. The minimum Tx-gap time following a Tx-sequence shall be equal to the duration of that proceeding Tx-sequence with a minimum of 3.5 ms.

5.4. Test Procedure

The EUT is in TX mode.Connect the EUT to the PXA and test the mouse of CH1 repectively.Use the following spectrum analyzer

setting: CH1: Center Frequency 2401MHz

Span: 0 Hz

Resolution Bandwidth (RBW):

1.0 MHz Video Bandwidth (VBW)

: 3.0 MHz

Sweep Points:

>8350 Trace:

Max Hold

Waiting for the trace stabilizing and save the result image.

5.5. EUT Operation

See chapter 2.2 of this test report.

5.6. Test Specification

According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.4 Duty Cycle, Tx-sequence, Tx-gap.

5.7. Test Result

Frequency Point(MHz)	Duty Cycle	Tx-sequence(ms)	Tx-gap(ms)	Test Result
2400(CH1)	5.38%	1.09	21.14	Pass

CH1's duty cycle, Tx-sequence and Tx-gap are shown.

$$\textit{Duty-cyc1e} = \frac{(30.\ 06-28.\ 97)\textit{ms} \times 5}{101.\ 3\textit{ms}} \times 100\% = 5.\ 38\%$$

TX-sequence=30.06ms-28.97ms=1.09ms TX-gap=51.2ms-30.06ms=21.14ms

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301

6. Medium Utilization factor(Conducted)

Page 27 of 44

Date: 2024/10/15

6.1. Test Equipment List

The following test equipments are used during testing the Medium Utilization (MU) factor:

Item	Instrument	Manufacturer	Type No./Serial No.	Due Date
1	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

6.2. Test Setup

6.3. Limits

For non-adaptive equipment using wide band modulations other than FHSS, the maximum Medium Utilization factor shall be less than 10 %.

6.4. Test Procedure

The EUT is in TX mode. Use the following spectrum analyzer

setting: CH1: Center Frequency 2401MHz

Span: 1.5 MHz

Resolution Bandwidth (RBW): Auto Video

Bandwidth (VBW): ≥RBW

Sweep: Auto Trace: Max Hold

Waiting for the trace stabilizing and save the result image.

6.5. EUT Operation

See chapter 2.2 of this test report.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301

6.6. Test Specification

Date: 2024/10/15

Page 28 of 44

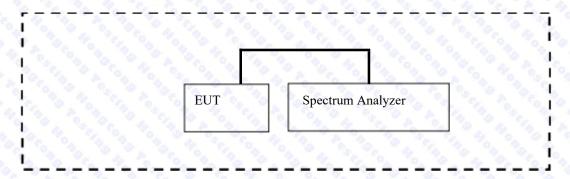
According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.5 Medium Utilization (MU) factor.

6.7. Test Result

$$MU = (P / 100 \, \text{mw}) \times DC$$

MU is Medium Utilization.P is the RF output power in mW tested in chapter 3.7 of this test report.DC is the Duty Cycle tested in chapter 5.7 of this test report.

Frequency Point(MHz)	P(dBm)	P(mw)	Duty Cycle(%)	MU(%)	Test Result
2401(CH1)	-14.33	0.037	5.38	0.20	Pass


7. Occupied Channel Bandwidth(Conducted)

7.1. Test Equipment List

The following test equipment are used during testing the Occupied Channel Bandwidth:

Item	Instrument	Manufacturer	Model/Serial No.	Due Date
1	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

7.2. Test Setup

7.3. Limits

This radio equipment is capable of operating in the band 2.4 GHz.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 29 of 44

7.4. Test Procedure

The EUT is in TX mode. Use the following spectrum analyzer settings:

Start Frequency: 2.4

GHz Stop

Frequency: 2.46GH

Z

Resolution Bandwidth (RBW)

:620 KHz Video Bandwidth (VBW)

:1.8 MHz

Sweep time

: 1ms

Trace:

Max Hold

Waiting for the trace stabilizing and save the result image.

7.5. EUT Operation

See chapter 2.2 of this test report.

7.6. Test Specification

According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.7 Occupied Channel Bandwidth.

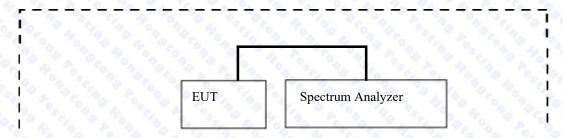
7.7. Test Result

Occupied Channel Bandwidth is from 2.401GHz, which are shown in Fig.16. This result is less than limit, Pass.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

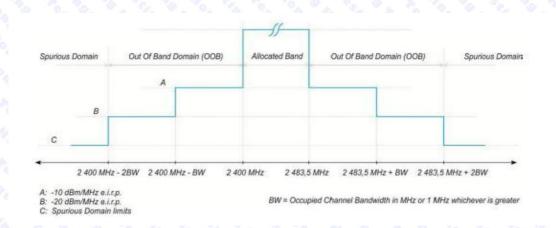
No. TCSH.240811301

Date: 2024/10/15 unwanted the **Transmitter** in emissions out of_{Page}band₄


domain(Conducted)

8.1. Test Equipment List

The following test equipment are used during testing the Transmitter unwanted emissions in the out-of-band domain:


Item	Instrument	Manufacturer	Type No./Serial No.	Due Date
1	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

8.2. Test Setup

8.3. Limits

The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in t Fig.18.

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal

Page 31 of 44

8.4. Test Procedure

The EUT is in TX mode. Use the following spectrum analyzer settings:

Start

Frequency: 2.4835GHz/2.4885GHz/2.395GHz/2.39GHz

Stop

Frequency: 2.4885GHz/2.4935GHz/2.4GHz/2.395GHz

Resolution Bandwidth (RBW)

:1.0 MHz Video Bandwidth (VBW)

:3.0 MHz

Sweep time: Auto

Sweep points:40001 Trace: Max

Hold

Waiting for the trace stabilizing.

8.5. EUT Operation

See chapter 2.2 of this test report.

8.6. Test Specification

According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.8 Transmitter unwanted emissions in the out-of-band domain.

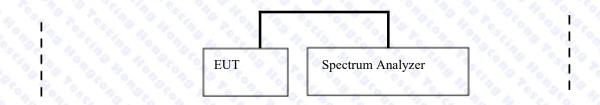
8.7. Test Result

Frequency Point(MHz)	Test Item Domain	Test Value	Test Result
	2483.5MHz to 2488.5MHz	< -10dBm	Pass
2401(CH 1)	2488.5MHz to 2493.5MHz	< -20dBm	Pass
	2395MHz to 2400MHz	< -10dBm	Pass
	2390MHz to 2395MHz	< -20dBm	Pass
The state of the s	2483.5MHz to 2488.5MHz	< -10dBm	Pass
2480(CH 79)	2488.5MHz to 2493.5MHz	< -20dBm	Pass
	2395MHz to 2400MHz	< -10dBm	Pass
	2390MHz to 2395MHz	< -20dBm	Pass

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301

Date: 2024/10/15 **Transmitter** unwanted emissions spyrjous₄₄ the


domain(Conducted)

9.1. Test Equipment List

The following test equipment are used during testing the transmitter unwanted emissions in the spurious domain:

Item	Instrument	Manufacturer	Model/Serial No.	Due Date
1	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

9.2. Test Setup

9.3. Limits

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in

Tab.1

Frequency range	cy range Maximum power	
30MHz to 47MHz	-36dBm	100KHz
47MHz to 74MHz	-54dBm	100KHz
74MHz to87.5MHz	-36dBm	100KHz
87.5MHz to 118MHz	-54dBm	100KHz
118MHz to 174MHz	-36dBm	100KHz
174MHz to 230MHz	-54dBm	100KHz
230MHz to 470MHz	-36dBm	100KHz
470MHz to 862MHz	-54dBm	100KHz
862MHz to 1GHz	-36dBm	100KHz
1GHz to 12.75GHz	-30dBm	1MHz

9.4. Test Procedure

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal

Date: 2024/10/15

Page 33 of 44

No. TCSH.240811301

The EUT is in TX mode. Use the following spectrum analyzer setting: Frequency Range:30MHz-1GHz/1GHz-12.75GHz

Resolution Bandwidth (RBW) :100KHz(<1GHz)/1.0

MHz(>1GHz) Video Bandwidth (VBW) :300KHz(<1GHz)/3.0

MHz(>1GHz)

Sweep time: Auto

Sweep

points:40001 Trace : Max

Hold

Waiting for the trace stabilizing and save the result image.

9.5. EUT Operation

See chapter 2.2 of this test report.

9.6. Test Specification

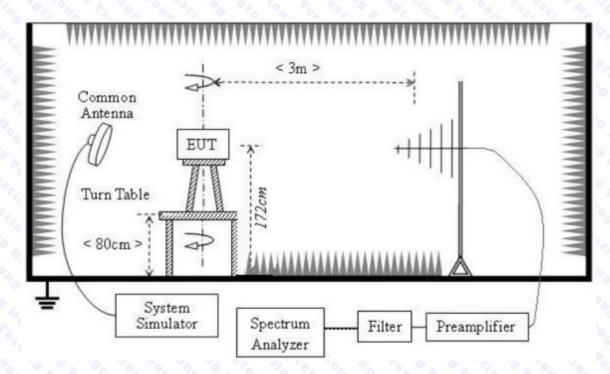
According to ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.9 Transmitter unwanted emissions in the spurious domain.

9.7. Test Result

Channel	Test Item Domain	Test Result
OLIA	30MHz to 1GHz	Pass
CH1	1GHz to 12.75GHz	Pass

10. Transmitter unwanted emissions in the spurious domain(Radiated)

10.1. Test Equipment List


The following test equipments are used during testing the Transmitter unwanted emissions in the spurious domain:

Item	Instrument	Manufacturer	Type No./Serial No.	Due Date
1	Shielding Room	ChengYu	5×4×3(m)/ CR	2025.09.23
2	Spectrum Analyzer	R&S	FSU26/200880	2025.09.23
3	3m Semi-anechoic Chamber	ChengYu	9.2×6.25×6.15(m)/ SAR	2025.09.23
4	BroadBand Log Antenna	Schwarzbeck	VULB 9163/9163-561	2025.09.23
5	Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D/9120D-1033	2025.09.23

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Date: 2024/10/15

Page 34 of 44

10.3. Limits

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in Tab.2.

Tab.2

Frequency range	Maximum power	Bandwidth
30MHz to 47MHz	-36dBm	100KHz
47MHz to 74MHz	-54dBm	100KHz
74MHz to87.5MHz	-36dBm	100KHz
87.5MHz to 118MHz	-54dBm	100KHz
118MHz to 174MHz	-36dBm	100KHz
174MHz to 230MHz	-54dBm	100KHz
230MHz to 470MHz	-36dBm	100KHz
470MHz to 862MHz	-54dBm	100KHz
862MHz to 1GHz	-36dBm	100KHz
1GHz to 12.75GHz	-30dBm	1MHz

10.4. Test Procedure

The EUT is in TX mode. The Test is taken in a SAR following the guidance of EN 300328 v1.9.1 Annex C

10.5. EUT Operation

See chapter 2.2 of this test report

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 10.6. Test Specification

Date: 2024/10/15

Page 35 of 44

According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.9 Transmitter unwanted emissions in the spurious domain.

10.7. Test Result

Vertical Polarization:

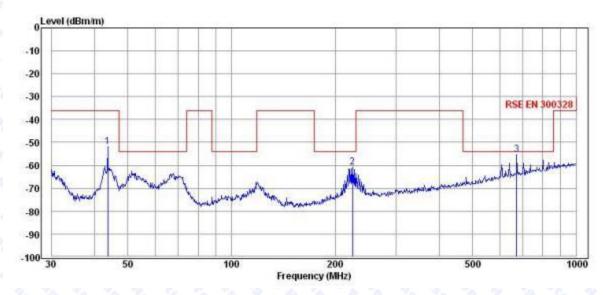


Fig.31

Freq	Reading	C.F	Result	Limit	M	argin	
MHz	dBm	dB	dBm/m	dBuV/m		dB	
43.66	-80.51	28.78	-51.73	-36.00	15.73	E1 20 41	
224.52	-88.60	27.87	-60.73	-54.00	6.73		
		672.84	-92.89	37.50		-55.39	.00
		54.00	1.39 Re	emarks: C.F	(Correc	tion Factor) =	
		Antenna	factor + Cable	e loss - Prear	np gain		

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

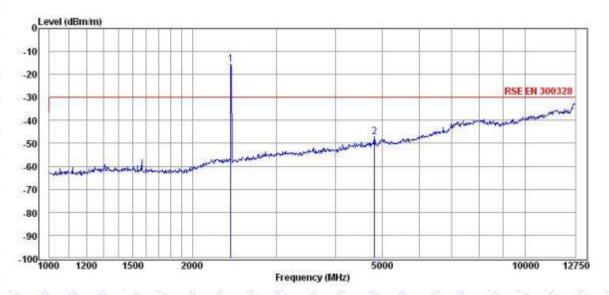


Fig.32 Reading C.F Result Limit Margin Freq Detector dBuV dBm dB dBm dB MHz 9.11 -15.45 -30.00-14.55 Peak 2406.58 -24.564821.76 -65.39

-47.05

-30.00

17.05

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

18.34

Horizonal polarization:

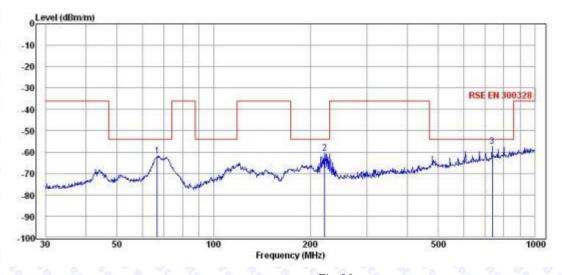


Fig.33 Reading Freq C.F Result Limit Margin dBm dB dBm/m dBuV/m MHz dB 25.76 7.93 66.73 -87.69 -61.93-54.00 -54.00 221.39 -88.11 27.52 -60.596.59 737.07 -95.78 38.56 -57.22 -54.00

3.22 Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal

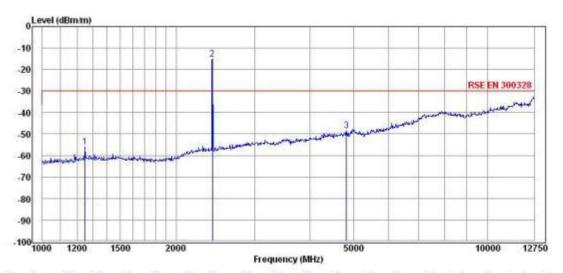
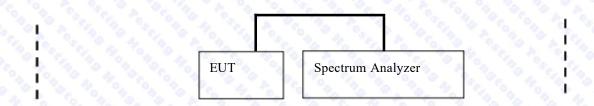


Fig.34 Reading C.F Freq Result Limit Margin Detector dBm dB dBm dBuV dB MHz 1247.90 -60.36 4.22 -56.14 -30.00 26.14 Peak Peak 2412.72 9.13 -15.19-30.00-14.81 -24.32Peak 4821.76 -66.64 18.34 -48.30 -30.00 18.30

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain


11. Receiver spurious emissions(Conducted)

11.1. Test Equipment List

The following test equipment are used during testing the receiver spurious emissions:

Item	Instrument	Manufacturer	Model/Serial No.	Due Date
1 4	PXA Signal Analyzer	Aglient	N9030A/ MY54170284	2025.09.23

11.2. Test Setup

11.3. Limits

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301

The receiver spurious emissions shall not exceed the values given in Tab.3.

Tab.3

Frequency range	Maximum power	Bandwidth	
30MHz to 1GHz	-57dBm	100KHz	
1GHz to 12.75GHz	-47dBm	1MHz	

Date: 2024/10/15

Page 38 of 44

11.4. Test Procedure

The EUT is in RX mode. Use the following spectrum analyzer setting: Frequency Range: 30MHz-1GHz/1GHz-12.75GHz Resolution Bandwidth (RBW): 100KHz(<1GHz)/1.0

MHz(>1GHz) Video Bandwidth (VBW): 300KHz(<1GHz)/3.0

MHz(>1GHz)
Sweep time:
Auto Sweep
points: 40001
Trace: Max
Hold

Waiting for the trace stabilizing and save the result image.

11.5. EUT Operation

See chapter 2.2 of this test report.

11.6. Test Specification

According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) 4.3.2.10 Receiver spurious emissions.

11.7. Test Result

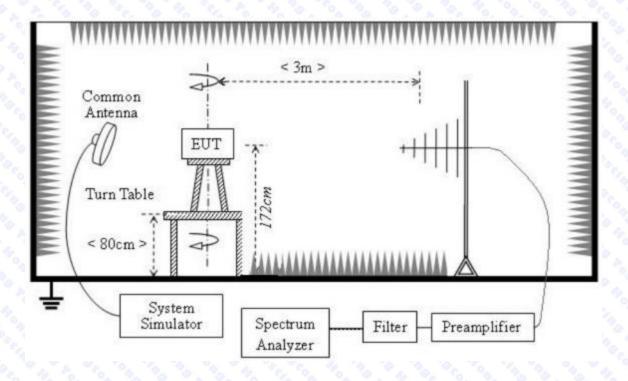
Channel	Test Item Domain	Test Result
CHA	30MHz to 1GHz	Pass
CH1	1GHz to 12.75GHz	Pass

12. Receiver spurious emissions(Radiated)

12.1. Test Equipment List

The following test equipments are used during testing the receiver spurious emissions:

Item	Instrument	Manufacturer	Model/Serial No.	Due Date
10	Shielding Room	ChengYu	5×4×3(m)/ CR	2025.09.23


This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Date: 2024/10/15

No. TCSH.240811301

2	Spectrum Analyzer	R&S	FSU26/200880	2025pgg239 of
3	3m Semi-anechoic Chamber	ChengYu	9.2×6.25×6.15(m)/ SAR	2025.09.23
4	BroadBand Log Antenna	Schwarzbeck	VULB 9163/9163-561	2025.09.23
5	Broadband Horn Antenna	Schwarzbeck	BBHA 9120 D/9120D-1033	2025.09.23

12.2. Test Setup

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

No. TCSH.240811301 **12.3. Limits** Date: 2024/10/15 Page 40 of 44

The Receiver spurious emissions shall not exceed the values in Tab.4.

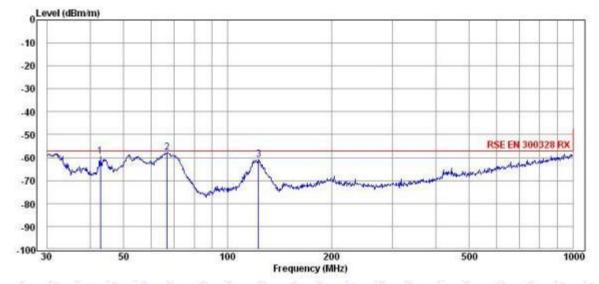
Tab.4

Frequency range	Maximum power	Bandwidth
30MHz to 1GHz	-57dBm	100KHz
1GHz to 12.75GHz	-47dBm	1MHz

12.4. Test Procedure

The EUT is in RX mode. The Test is taken in a SAR following the guidance of EN 300328 v1.9.1 Annex C.

12.5. EUT Operation


See chapter 2.2 of this test report.

12.6. Test Specification

According to ETSI ETSI EN 300 328 V2.2.2 (2019-07) Receiver spurious emissions.

12.7. Test Result

Vertical polarization:

				Fig.39		
	Freq	Reading	C.F	Result	Limit	Margin
	MHz	dBm	dB	dBm/m	dBuV/m	dB
e _o	42.75	-88.36	28.77	-59.59	-57.00	2.59
	66.73	-83.54	25.76	-57.78	-57.00	0.78
	122.83	-86.04	25.21	-60.83	-57.00	3.83

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Page 41 of 44

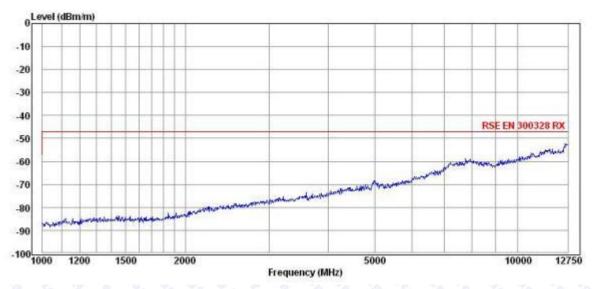


Fig.40

Horizontal polarization:

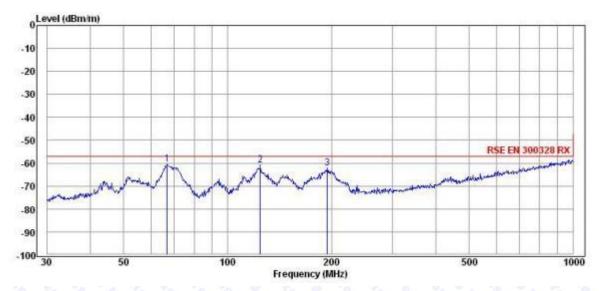
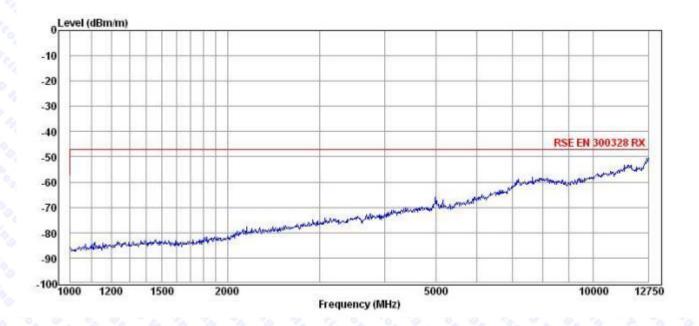



Fig.41 Reading C.F Limit Freq Result Margin dBm dΒ dBuV/m dBm/m MHz 25.76 66.73 -86.38 -60.62-57.00 3.62 124.13 -86.15 25.22 -60.93-57.00 3.93 194.45 -89.36 27.09 -62.27-57.005.27

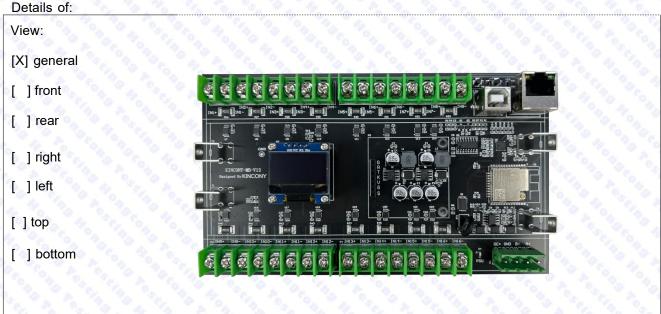
Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality

Page 42 of 44

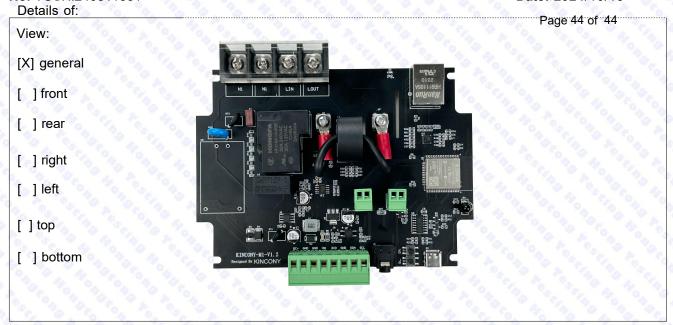
*****End of Report****

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality


No. TCSH.240811301 Date: 2024/10/15

Page 43 of 44

Type of equipment, model: **Smart Energy Meter**


N90,N60,N30,N20,N10,M16v2,M1,MB

Details of: View: [X] general [] front [] rear [] right KINCONY [] left AC ENERGY METER [] top [] bottom

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality control. Without the writing agreement of the company, the client is not allowed to copy the report in part(entire copy is excepted).

No. TCSH.240811301 **Date**: 2024/10/15

Details of:

- End of Annex I

This report is only responsible for the tested sample(s) and item(s), the testing result(s) is used for scientific research, teaching or internal quality control. Without the writing agreement of the company, the client is not allowed to copy the report in part(entire copy is excepted).